NET Event Handling

Tame .NET Events

Take advantage of .NET's event-handling options
to improve on the basics or craft powerful
event-handling solutions.

Technology Toolbox '

J VB.NET

o c#

[SOL Server 2000
1 ASP.NET

a XML

1 VB6

Resources

C# Explorer, “Delve Into
Delegates” by Steve
Lardieri [VSM September
2001]

34

by Juval Lowy

Imost every application requires some form of events publishing and

ry app quires s P g 2
subscription mechanism. An event is usually nothing more than an object

(the “source” or “publisher”) notifying all interested parties (the “sinks” or

“subscribers”) about something that took place on the object’s side. You accom-

plish this notification by calling methods on the sink objects. .NET makes this

formerly tough development task a lot easier. This article discusses .NET events
My toug P : ‘

design guidelines and development tricks that promote loose coupling between
gn g P p Pig

publishers and subscribers, improve availability, con-
form to existing conventions, and generally take
advantage of .NETs rich events support infrastruc-
ture (see Resources for more information about del-

egates and events).

Before .NET, you were
onyourown, forced to hand-
craft event-handling solu-
tions, often reinventing the
wheel and repeating mun-
dane event-handling code
overand over. The source of
the problem was that devel-
opment languages such as
C++ or component tech-
nologies such as COM were
event-oblivious: Nothingin
the language or the compo-
nent technology supported
events inherently. You had
to add that support on top,
using function pointersin C

and C++ or COM’s connection points protocol. The
resulting programming model was usually cumber-
some and messy, and it often coupled the event pub-
lisher to the eventsubscriber. .NET, on theother hand,

W W WM Mmoo e oW Mg

Thread pool

Source thread /,{ =
Sink list | "
Sl a4 e

T ~! Beginlnvoke()

]
(]
P o e - -

L}
L}
]
(] SRR —_—
. Beginlnvoke() ~—-——-‘ Sink |

—— Sink |

o]

Beginl nvok-e()

Figure 1 Call Asynchronous Events With Beginlnvoke(). By using Beginlnvoke(}
to fire an event, the event to each sink gets fired on a different thread from the
thread pool, That way, if one or more of the event's target sinks take a while to
process the event, or even hang, the rest of the source process isn't brought to
its knees waiting.

VISUAL STUDIO MAGAZINE * APRIL 2002 = www.visualstudic gazi

o LR B *r i o
sog)

5 P paetilh
B o T e —

treats events as first-class citizens, with standard out-of-the-box
support for connection setup and tear-down, management of the
subscribers list, and of course, the publishing act itself.

.NET events rely on delegates: type-safe method references and
overloaded operators used to manage a connection. A delegate defines
only the signature of the method the sinks should provide to receive
a specific event on. Although technically the delegate can define any
method signature, in practice you should conform to a specific
signature, The arguments go like this: First, the method should have
a void return type only. It doesn’t make any sense to return a value
because the publisher has no need for values. The publisher has no idea
why a subscriber wants to subscribe in the first place.

In addition, the delegate class hides the actual publishing act from
the publisher. The delegateis the one iterating over thesink list, calling
each corresponding method. The returned values aren’t propagated
to the publisher’s code. Also, some subscribers would likely want to
receive the same event from multiple sources. Because there’s no
flexibility in providing as many methods as publishers, the subscriber
wants to provide the same method to multiple publishers. However,
the signature should contain the publisher’s identity so the subscriber
can distinguish between different publishers. The easiest and most
generic way to do this is to add a parameter of type object, called the
sender parameter:

public delegate void
NumberChangedDelegate(
object sender,int num);

Publishers can simply pass themselves as the sender (using the
reserved words #his in C# or Me in VB.NET).

Couple Publishers to Subscribers

Finally, defining actual event arguments such as int num couples
publishers to subscribers, because the subscriber has to expect a
particular set of arguments. Changing these arguments in the future
affects all subscribers. To contain an argument change, it's better to
provide a generic event arguments object as a parameter. .NET
provides the EventArgs class to do this:

public class EventArgs
{
public static readonly
EventArgs Empty;
static EventaArgs()
[
Empty = new EventArgs{);
}
public EventhArgs(}{)

Pass in an EventArgs object instead of specific event arguments:

public delegate void
NumberChangedDelegate(
object sender,
EventArgs eventArgs):

VISUAL STUDIO MAGAZINE + APRIL 2002 = www.visual " T

/" C# « Prevent Subscribers From Modifying 2

Event Arguments
public class NumberEventArgsl : EventArgs
f

public readonly int Num;
NumberEventArgsl(int num)
{
Num = num;
}
)
public class NumberEventArgs? : EventArgs

{

protected int m_Num;
NumberEventArgs2{int num)
[

m_Num = num;
)
int MNum
{

get

[

return m_Num;
)

|

Listing 1 By default, one subscriber can affect all other subscribers
that handle the event after it by changing the event arguments. You
can prevent subscribers from modifying the event arguments either
by using a read-only property or applying the readonly access modi-
fier to a public member.

If the publisher has no need for an argument, pass in Event-
Args.Empty, taking advantage of the static constructor and the read-
only Empry class member.

If the event requires arguments, derive a class from EventArgs,
such as MyEventArgs; add member variables, methods, or properties
as required; and pass in MyEventArgs. The subscriber should down-
cast the generic EventArgs to the specific argument class associated
with this event (MyEventArgs, in this cxample) and access the
arguments. Doing so allows you to add arguments, remove unused
arguments, derive yet another class from MyEventArgs, and so on,
without forcing a change on the subscribers.

The resulting delegate definition is so generic that .NET already
defines such a delegate—the EventHandler delegate:

public delegate void
EventHandler{
object sender,
EventArgs eventArgs);

As a result, you don’t need to define your own delegates for events.
You should use EventHandler in almost all cases, although the rest of
this article doesn’t use EventHandler for simplicity’s sake. A bit more
information about signatures: The convention for the sink method
name is On<EventName>, making the code standard and readable.

As explained previously, you should provide event arguments in
a class derived from EventArgs, and have the arguments as class
members. The delegate class iterates over its list of subscribers,
passing the argument object from one subscriber to the next.

35

oy 1
oRAE®”

G

.NET Event Handling)

However, nothing prevents a particular subscriber from modifying
the argument values and affecting all other subscribers that handle
the event after it. Usually, you should prevent subscribers from
modifying these members as the event delegate passes the event
argument object from one subscriber to the next. To preclude
changing the members, either provide access to them as read-only
properties or expose them as public members and apply the readonly
access modifier. In both cases, you should initialize the argument
value in the constructor (see Listing 1).

The publisher should always check the delegate for a null value
before attempting to publish. The reason is that if nobody has
subscribed to the event, the delegate listis empty, and .NET throws
an exception when trying to access it. Speaking of exceptions, the
publisher has no way of knowing how disciplined the subscribers
are. Some subscribers might encounter an exception in their event
handling, not catch it, and cause the publisher to crash. Always

publish inside a try/catch block:

public class MySource
{
public event EventHandler m_MyEvent:
public void FireEvent()
[
try

['/ C# e Encapsulate Event Delegate Member Variables =)

public delegate void NumberChangedDelegate(int
num}

| public class MySource
|
protected event NumberChangedDelegate
‘ m_NumberChangedEvent;
public event NumberChangedDelegate
‘ NumberChangedEvent
|

{
add

m_NumberChangedEvent += value;
|
remove
|
m_NumberChangedEvent -= value;
1 |
| | |
| public void FireEvent{int num)
| |
m_ NumberChangedEvent{num);
!

)

MySource source = new MySource();
MySink sink = new MySink():

{/5etup connection: ‘

source.NumberChangedEvent += new |
NumberChangedDelegate(sink.OnNumberChanged);

//Fire Event

source.FireEvent(42);

[/Teardown connection:

source.NumberChangedEvent -= new
NumberChangedlelegate{sink.0nNumherChanged);

Listing 2 Event accessors encapsulate the actual event delegate mem-
ber variable (note the "protected” modifier). Accessors allow the same
client code as they do with raw public event delegate members.

36

[=vent accessors

_provide a similar benefit
to properties: They hide
the actual class member
while maintaining the
original ease of use.

if{m_MyEvent != null}
m_MyEvent(this,
EventArgs.Empty);
}
catch
|
//handle exceptions

Earlier, you saw that you access the delegate member variable
directly to hook up a subscriber to a publisher. Exposing class
members in public is asking for trouble. Doing so violates the core
object-oriented principle of encapsulation and information hiding,
and couples all the subscribers to the exact member variable defini-
tion. .NET overcomes this issuc by providing a property-like
mechanism, called event accessors. Accessors provide a similar
benefit to properties: They hide the actual class member while
maintaining the original ease of use, Event accessors use language-
specific reserved words. C# uses add and remove to encapsulate the

C# » Manage Large Numbers of Events \

EventHandlerlList eventlist;

! using System.ComponentModel
| new EventHandlerList();

eventlist =

|
{{To add to the list: |
eventList.AddHandler(m_Buttonl,new
EventHandler{OnButtonClicked));
|
|

| /iTo fire event:
EventHandler handler =

‘ (EventHandlerleventList[m_Buttonll:
handler(m_Buttonl,EventArgs.Empty);

‘ //To remove from the 1ist:
eventList.RemoveHandler{m_Buttonl,new
EventHandler{OnButtonClicked)); |

J

Listing 3 Use the EventHandlerList class when it's impractical to
dedicate member variabies per event. EventHandlerList stores value/
key pairs identifying the event and its handler, You can use any .NET
object as a key.

VISUAL STUDIO MAGAZINE * APRIL 2002 * www.vi

C# = Manage Sink Interfaces

public class MySource
{
protected event EventHandler m_eventl;
protected event EventHandler m_event2;
protected event EventHandler m_event3;
public void Advise(IMySink sink, EventType
eventType)
{
if((eventType & EventType.OnEventl) =
EventType.OnEventl}
{
m_eventl += new
EventHandler{sink.OnEventl);
|
if(leventType & EventType.OnEvent2) ==
EventType.OnEvent2)
{
m_eventZ += new
EventHandler{sink.OnEvent2);
)
/it EventType.OnEvent3..
]
public void Unadvise(IMySink
sink,EventType
eventType)
{

ifl(eventType & EventType.OnEventl)
EventType.OnEventl)

{
m_eventl -= new
EventHandler{sink.OnEventl):
}
if((eventType & EventType.OnEvent2)
EventType.OnEvent2)

[
m_event? -= new
EventHandler(sink.OnEvent2);
)
f/if EventType,.OnEventi..
}
public veid FireEvent(EventType
eventType)
|
if{(eventType & EventType.OnEventl) == |
EventType.OnEventl} |
i |
m_eventl{this,EventArgs.Empty):
}
if({eventType & EventType.OnEvent2)
EventType.OnEvent2)

{
m_event2(this,EventArgs.Empty):
)
fiif EventType.OnEvent3..
}
}

Listing 4 The publisher can further encapsulate the actual event implementation by providing methods that manage connection to sink
interfaces. This schema also saves round trips and promotes loose coupling between the publisher and its subscribers.

actual event member variable, performing the += and -= functions
respectively (see Listing 2).

Manage Numerous Events

Having a class that deals with a large number of events is common
when developing frameworks. For example, the Control class in the
System.Windows.Forms namespace has events corresponding to
most Windows messages—a huge number, by any account. The
problem in such cases is that it’s impractical to allocate a class
member and/or accessor per event. The class definition is unman-
ageable, not to mention problems that occur with documentation,
CASE tool support, and even IntelliSense. .NET provides the
EventHandlerList class (defined in the System.ComponentModel
namespace) just for this predicament. EventHandlerList is a linear
list that stores value/key pairs. The key is a generic object identifying
the event, and the value is an EventHandler instance. The key can
be an index, a string, a particular button, and so on (see how to use
the EventHandlerList class in Listing 3).

This class adds the OnButtonClicked() method as an event
handler to the m_Button1 button class member, fires the event, and
removes the event handler from the list. Note the key here is an
instance of an object (a button), but it could be anything else—for
example, a string such as "m_Button1".

Event accessors provide just enough encapsulation by hiding the
actual event members. However, you can improve on this model.
For one, a subscriber might want to subscribe to a set of events. The
event subscriber shouldn’t have to make multiple, potentially
expensive calls, both to set up and tear down the connections. The
subscriber doesn’t need know about the event accessors in the first
place, and the subscriber might want to receive events on an entire
sink interface instead of individual methods. The next step is to

VISUAL STUDIO MAGAZINE * APRIL 2002 * www.visualstudiomagazine.com

provide a simple but generic way to manage connections, one that
saves the redundant calls, encapsulates the event accessors and
members, and allows objects to sink interfaces.

Imagine an interface that defines a set of events, the IMySink
interface:

public interface IMySink
[
void OnEventl(
object sender,
EventArgs eventhrgs):
void OnEvent2(
object sender,
EventArgs eventArgs):
vold OnEvent3(
object sender,
EventArgs eventArgs):

Anybody can implemenc this interface, and the interface is all the
publisher should know about.

Next, define an enumeration of the events, with an enum for
cach event. Mark the enum with the [Flags] attribute:

[Flags]

public enum EventType

{
OnEventl,
OnEvent2,
OnEvent3,
OnAl1Events =

37

.NET Event Handling)

-

C# = Fire Events Asynchronously

public delegate void NumberChangedDelegate(int
numj ;

public class MySource
{
public event NumberChangedDelegate
m_NumberChangedEvent;

public void FireEventAsynch(int num)
{

Delegate[] delegates =
m_NumberChangedEvent.
GetInvecationlist();

foreach(Delegate del in delegates)

[

NumberChangedDelegate sink =
(NumberChangedDelegate)del:
sink.BeginInvoke(num,null,.null);
I
b
public void FireEvent(int num)
{

m_ NumberChangedEvent{num);

|

!

Listing 5 You can't call Begininvoke() on an event delegate, because
the delegate will probably have more than one callback. Instead, use
GetinvocationList() to access the callback list, and call Begininvoke()
on each sink delegate yourself.

OnEventl|OnEvent?|OnEvent3

The [Flags] artribute indicates you can use the enum values as a bit-
mask (see the way EventType.OnAllEvents is defined).

The publisher provides two methods, Advise() and Unadvise(),
that accept two parameters: the interface and a bit-mask flag indicat-
ing which events to subscribe the sink interface to. Internally, the
publisher could have an event delegate member per method on the
sink interface, or just one for all methods (it’s an implementation
detail, so the subscriber shouldn’t care). Advise() checks the flagand
subscribes the corresponding interface method, and Unadvise()
unsubscribes (see Listing 4, which also shows the FireEvent() method,
with error handling removed for clarity). The example in Listing 4
uses an event member variable per method on the sink interface.

The code required to advise or unadvise is equally straightfor-
ward, yet it shows the elegance of this approach for sinking whole
interfaces with one call, and how completely encapsulated the actual
event class members are:

MySource source = new MySource():

IMySink sink =

new MySink();

//subscribe to events 1 and 2:

source,Advise{sink,

EventType.0OnEventl |
EventType.OnEvent2);

Fire Events Asynchronously
Regardless of how you manage your events, the event is blocked
when the publisher fires it until all subscribers finish handling the

38

VISUAL STUDIO MAGAZINE = AFRIL 2002

event. Only then does control return to the publisher. Disciplined
and well-behaved subscribers shouldn’t perform any lengthy opera-
tion in their event handlers. The problem is, the publisher can’t zell
whether it’s dealing with disciplined subscribers. The solution is to
fire the events asynchronously.

In the past, developers created worker threads to publish on,
which you can still do in .NET. However, .NET has built-in
support for asynchronous method invocation. The delegate is
actually a sophisticated class, and it has an asynchronous
BeginInvoke() method. BeginInvoke() accepts the same parameters
as the delegare itself, as well as two other parameters used to retrieve
returned values from the method and notify when it’s completed.
These parameters are of little use when publishing events—there
shouldn’t be any returned parameters, and the publisher shouldn’t
carewhen the subscriber is done processing the events. Beginlnvoke()
uses a thread from the thread pool to dispatch the call, and returns
immediately (see Figure 1). Unfortunately, you can’t call
Beginlnvoke() on the event member directly. You can invoke
Beginlnvoke() only if the delegate’s internal list of sink callbacks
(actually other delegates) has only one target in it. If you have more
than one, the delegate throws an exception:

//this throws an exception:
public void FireEventAsynch(int num)
[
m_NumberChangedEvent.
Beginlnvoke{num,null,nuil);:

The workaround is to iterate over the event delegate internal invoca-
tion list, calling BeginInvoke() on every one of them. You access the
internal list using the GetlnvocationList() method (see Listing 5 for
how to fire the same event as in Listing 2 asynchronously).

Taming .NET events is essential for any decent-size application
to reduce coupling between event publisher and subscribers, and to
promote encapsulation and ease of maintenance. This code im-
proves on the raw technology offered by .NET; its programming
techniques are applicable to almost all parts of .NET, and are
valuable tools in your development toolbox. vsm

Juval Léwy is a seasoned software architect and the principal of
|Design, a consulting and training company focused on .NET design
and migration. Juval's the author of COM and .NET Component
Services(O'Reilly & Associates). This article is based on excerpts from
his upcoming book on developing .NET components. Contact him at
www.bartonsphere.net/idesign.

ﬁu"‘"._t.:;ﬂ T o SBY agde 7 (3%
et et Go Online
Use these Locator+ codes at www.visualstudiomagazine.com |
to go directly to these related resources. |
V80204 Download all the code for this issue of VSM. '

VS0204JL Download the code for this article separately. This
article's code includes a Visual Studio .NET solution with inde-
pendent projects demonstrating each key point in the article.

| VS0204JL_T Read this article online. ‘

* www.visualstudiomagazine.com

	Visual Studio April 02 VOL 12 NO 4 Page 1.pdf (p.1)
	Visual Studio April 02 VOL 12 NO 4 Page 2.pdf (p.2)
	Visual Studio April 02 VOL 12 NO 4 Page 3.pdf (p.3)
	Visual Studio April 02 VOL 12 NO 4 Page 4.pdf (p.4)
	Visual Studio April 02 VOL 12 NO 4 Page 5.pdf (p.5)

